IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 21 January 2024, accepted 24 February 2024, date of publication 7 March 2024, date of current version 15 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3374649

== RESEARCH ARTICLE

SymFormer: End-to-End Symbolic Regression
Using Transformer-Based Architecture

MARTIN VASTL'-2, JONAS KULHANEK 13, JIRi KUBALIK"'!, ERIK DERNER",
AND ROBERT BABUSKA 14, (Member, IEEE)

1Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, 16000 Prague, Czech Republic
2Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic

3Faculty of Electrical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic

4Department of Cognitive Robotics, Delft University of Technology, 2628 CD Delft, The Netherlands

Corresponding author: Erik Derner (erik.derner@cvut.cz)

This work was supported by the European Regional Development Fund under the project Robotics for Industry 4.0

(reg. no. CZ.02.1.01/0.0/0.0/15_003/0000470) and by the Ministry of Education, Youth and Sports of the Czech Republic
through the e-INFRA CZ (ID:90140) and through the e-INFRA CZ (ID:90254). This work has also received funding from

the European Union’s Horizon Europe research and innovation programme under grant agreement No. 101070254 CORESENSE.
Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union
or the Horizon Europe programme. Neither the European Union nor the granting authority can be held responsible for them.

ABSTRACT Many real-world systems can be naturally described by mathematical formulas. The task
of automatically constructing formulas to fit observed data is called symbolic regression. Evolutionary
methods such as genetic programming have been commonly used to solve symbolic regression tasks,
but they have significant drawbacks, such as high computational complexity. Recently, neural networks
have been applied to symbolic regression, among which the transformer-based methods seem to be most
promising. After training a transformer on a large number of formulas, the actual inference, i.e., finding a
formula for new, unseen data, is very fast (in the order of seconds). This is considerably faster than state-of-
the-art evolutionary methods. The main drawback of transformers is that they generate formulas without
numerical constants, which have to be optimized separately, yielding suboptimal results. We propose a
transformer-based approach called SymFormer, which predicts the formula by outputting the symbols and
the constants simultaneously. This helps to generate formulas that fit the data more accurately. In addition, the
constants provided by SymFormer serve as a good starting point for subsequent tuning via gradient descent
to further improve the model accuracy. We show on several benchmarks that SymFormer outperforms state-
of-the-art methods while having faster inference.

INDEX TERMS Symbolic regression, neural networks, transformers.

I. INTRODUCTION

Many systems in various fields ranging from industrial
processes to social sciences can be described by mathematical
formulas. Knowing the governing equations of a nonlinear
system provides insight into the system’s inner workings and
it also allows us to predict how the system will behave in the
future. Deriving mathematical models from first principles is
often tedious and for some systems even impossible. In such a
case, methods to automatically construct formulas fitting the
data observed on the system can be used. The task of finding

The associate editor coordinating the review of this manuscript and

approving it for publication was Fahmi Khalifa

such a formula from the observed data is called symbolic
regression (SR). This method has already been applied to
a variety of real-world problems, e.g., in physics [1], [2],
robotics [3], [4], or machine learning [5].

In the past decades, symbolic regression tasks [6], [7] were
commonly solved by means of genetic programming [6],
[8], [9], [10], [11]. However, discovering formulas in this
way is slow and computationally expensive. For each SR
instance, an entire population of formulas has to be evolved
and evaluated repeatedly through many generations. In recent
years, approaches based on neural networks emerged [12],
[13], [14], [15]. Among them, the most efficient ones
are methods that train a transformer model on a large

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

37840

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024


https://orcid.org/0000-0002-8437-3626
https://orcid.org/0000-0002-6965-6142
https://orcid.org/0000-0002-7588-7668
https://orcid.org/0000-0001-9578-8598
https://orcid.org/0000-0003-3318-2851

M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture

IEEE Access

collection of data and the corresponding formulas [14],
[15]. The transformer uses the data to autoregressively
generate formulas by predicting each symbol conditioned
on the previously generated symbols. The expressions are
decoded without constants, i.e., all constants are replaced
by a special symbol and are sought afterward using global
optimization [14], [15]. However, the values of the constants
have a large impact on how well the generated function fits
the data. Without generating the constants simultaneously
with the equations, the model will not represent the data well.

Inspired by [16], where a similar idea was applied to the
problem of recurrent sequences, we propose SymFormer,
a novel transformer-based architecture trained end-to-end
on hundreds of millions of formulas. Our work makes the
following contributions:

1) SymFormer generates a symbolic representation of the
formula, including the numerical values of the constants.
This allows the symbolic decoder to use the constants
generated so far and so to improve the model’s accuracy.

2) We use the generated constants to initialize a local
gradient optimizer to fine-tune the final constants.

3) Our approach is thoroughly evaluated and compared to
relevant alternative methods on a large set of univariate
and bivariate functions. We also study the effect of using
different constant encoding methods.

4) The source code and the pre-trained model checkpoints
are publicly available at https:/github.com/vastlik/
symformer.

Il. RELATED WORK

Genetic Programming approaches are a traditional way
of solving SR [8], [17], [18]. Genetic programming (GP)
evolves expressions encoded as trees using selection,
crossover, and mutation. The drawbacks of GP-based
approaches are that they evolve each equation from scratch,
which is slow, and that the models tend to increase in
complexity without much performance improvement [19],
[20]. GP is also inefficient in fine-tuning the constants only
by using genetic operators [21], [22].

Neural Network approaches can be generally divided
into three categories. The first one includes approaches based
on the Equation learner (EQL) [23], [24], [25]. The idea
behind EQL is to find a function f(x) = y by training a
neural network on x as the input and y as the output. Through
regularization, the neural network is forced to use as few
network weights as possible. Elementary functions (sin, log,
etc.) are used as activation functions, and after the training,
they are read from the network with the corresponding
weights. A limitation of the EQL-like approaches is that
one has to design a strategy to force convergence towards a
sparse neural network model representing a compact analytic
formula. Typically, such a strategy implements a trade-off
between the neural network’s accuracy and sparsity. Lastly,
these approaches can be slow as they need to find each
equation from scratch.

VOLUME 12, 2024

The second set of approaches is based on training
a recurrent neural network (RNN) using reinforcement
learning [12]. The idea is to let the RNN generate the equation
and then calculate the reward as an error between the ground-
truth f(x) values and the values from the predicted function
f (x). An interesting extension is proposed in [13], where the
RNN is used to sample an initial population for a genetic
algorithm. A limitation of both of these approaches is that
the model does not generate the constants, which have to
be found through nonlinear optimization, slowing down the
whole training loop and limiting the achievable accuracy of
the model [12], [13].

A transformer-based approach was introduced in [14],
[15], [16], where a large amount of training data is generated
and used to train a transformer [26] in a supervised manner.
A similar approach is proposed in [15], where the GPT-2
[27] model is trained on the input-output data with the
corresponding symbolic expression as the output. Global
optimization finds the constants for each equation. In [14],
the encoder from the Set Transformer [28] and the decoder
from the original transformer architecture [26] are used.
Similar to [15], the models are trained only on skeletons
(expressions without constants), and afterward, the constants
are fitted using global optimization. An approach where the
transformer directly generates the constants is introduced
in [16]. The constants are predicted jointly by encoding
them into the symbolic output. Integers are represented
through the base-b direct encoding, and the IEEE 754 float
representation is used with the mantissa rounded to the
four most significant digits. New tokens are introduced to
represent exponents. A disadvantage of this approach is
that the mantissa has a finite precision. The authors also
observed that when approximating difficult functions, the
symbolic model typically only predicts the largest terms in
its asymptotic expansion. This method was further extended
in [29], where the constants found by the model serve as
initial values for global optimization to improve the accuracy
further. Unlike these methods, SymFormer does not limit the
precision of the constants it outputs.

ill. METHOD

The symbolic regression task can be formulated as finding
an unknown function f given a finite set of input data points
along with the corresponding outputs. The goal is to construct
a function (mathematical formula) f minimizing the squared
difference between the function’s output on the input points
and the outputs of the unknown function f. In this work,
we focus on univariate and bivariate functions.

Given a set of observed input-output pairs, the model
generates the structure of the formula together with the values
of all constants present in the formula in a single forward
pass of the transformer model [26]. This is visualized in
Figure 1. The input-output pairs are concatenated into a
sequence which is processed by the transformer’s encoder.
The transformer’s decoder attends to the encoder’s resulting
sequence and autoregressively predicts the formula as a

37841



IEEE Access

M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture

For each predicted equation

sin

0.0

Select equation with a minimal
error on input points

Cco X

0.3 0.0

LOCAL GRADIENT SEARCH

sin

0.0

sin(0.2*x)

0.2

0.0

A

FIGURE 1. Schematic diagram of SymFormer inference. The input-output data are passed through the transformer, generating several candidate
equations using Top-K sampling. These candidates are further improved using gradient descent. The final equation is then selected by minimizing

the mean squared error.

Encoder Decoder
Symbolic output

MAB Detail

Coefficients Softmax

! !

X " Linear Linear
Multi-Head Feed

: Attention Forward
Y

Add & Norm «—
|

Feed
Forward

MAB

48 1
: : | |
H @\ Add & Norm <—
3 koutputs Multi-Head M x
Attention
o} 4 4
s Add & Norm
«—
Feed E h
Forward Masked
Multi-Head
Attention

Dropout :ﬁ

Concat

Nx

ISAB
<
>
®

Positional
embedding
Symbolic embedding Coefficient embedding

t t

Symbolic input

Coefficient input

Points embedding

Points

FIGURE 2. Schematic overview of the SymFormer architecture. MAB refers
to the Multihead Attention Block, ISAB is the Induced Set Attention Block,
and PMA stands for Pooling by Multihead Attention.

sequence of individual symbols in the formula and the
corresponding constants. In fact, the decoder models the
probability distribution over the next symbol and the value of
the constant, given the expression prefix and the associated
values of the constants.

A. MODEL ARCHITECTURE

The SymFormer model architecture is depicted in Figure 2.
Following [26], our model consists of an encoder and a
decoder. The encoder takes as its input the data points (input-
output pairs) sampled from the formula. Each data point is

37842

first passed through an affine layer to increase the dimen-
sionality to the hidden size of the transformer. The resulting
vectors are then concatenated to build the sequence that the
transformer encoder processes. The order of these vectors is
not important since the positional encodings are not used,
and, therefore, the encoder treats each vector independently
of its position in the sequence. We pass the sequence of
hidden vectors through four induced set attention blocks
[28], each of which consists of two cross-attention layers
and two traditional feed-forward blocks [26]. Following the
standard practice in transformer architectures [26], for all
cross-attention layers and feed-forward blocks, we pairwise
sum the output with the layer’s input before passing it through
a normalization layer [30].

The first cross-attention uses the hidden vectors as its
keys and values and a set of trainable vectors as the queries.
The resulting sequence will have the same length as the
number of these trainable query vectors. Note that each
encoder block has its own independent set of query vectors.
The resulting sequence is passed through the first feed-
forward block. The second cross-attention layer then uses
the previously generated sequence as the keys and values,
and it uses the original hidden sequence (the input to the
first cross-attention) as its queries, which results in the same
sequence length as the length of the original input. The second
cross-attention is followed by the second feed-forward block
and a dropout layer [31]. Finally, to get a representation of the
input independent of the number of data points, we compute
the cross-attention between the output of the last block and a
set of trainable vectors. Similarly, as in the individual encoder
blocks, this cross-attention fixes the sequence length to the
number of trainable query vectors.

The input to the decoder is a sequence of trainable
positional embeddings that are summed with embedded
ground truth output symbols and concatenated with affine-
projected ground-truth constants. The decoder then passes
the sequence through four standard transformer blocks [26],
consisting of a self-attention layer, a cross-attention between
the hidden sequence and the encoder’s output, and a

VOLUME 12, 2024



M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture

IEEE Access

feed-forward block. Two heads are applied to the output of
the last block: a classification head outputting the symbols
and a regression head outputting the values of constants.

B. TRAINING AND INFERENCE

The model is trained to predict the next symbol and the
associated value of a constant given the previous symbols in
the expression. Thanks to the transformer architecture [26],
the model can be optimized for all symbols in the sequence
with linear overhead. The classification head is trained using
the cross-entropy loss Lj,ss With the symbols as the target.
The regression head is trained using the mean squared
error (MSE) Lysg to output the value of the constant if
the associated symbol is a constant. The regression loss is
masked such that it is optimized only on positions where the
associated symbols are the constants. The total loss £ is a
weighted sum of the two losses:

L= »Cclass + )"ﬁMSEa (1)

where A is a hyperparameter. At the beginning of the
training, we set A to zero, and after approximately 97 700
gradients steps, we gradually increase it using the cosine
schedule [32]. During training, we also found it beneficial
to add a small random noise sampled from N (0, 62) to the
constants because the constants are not always precise during
the inference. The parameter o is also decreased according to
the cosine schedule.

At inference time, we encode the set of input-output pairs
using the encoder. The decoder then autoregressively decodes
a sequence of symbols and constants one at a time by first
sampling from the categorical distribution of the symbol
classification head and then taking the prediction from the
regression head if the predicted symbol was a constant. This
process is terminated when the model reaches the end-of-
sequence (EOS) token. In practice, we sample not one but
multiple independent sequences. For all these sequences,
we fine-tune the values of all constants by minimizing
the MSE on the observed data samples, see Section III-C.
Finally, we select the formula with the lowest error after the
optimization.

C. CONSTANTS FINE-TUNING
To optimize the constants in the predicted expressions,
we use a stochastic gradient descent (SGD) method to
minimize the MSE between the function prediction and the
observed outputs in the training data. For each expression,
we initialize the gradient descent procedure with the learning
rate of 0.001 and the momentum of 0.9. Next, we run a
gradient-descent iteration while clipping the gradient norm
to 10 and calculate the MSE with the newly found constants.
If the loss does not decrease by at least 0.1 %, we divide the
learning rate by 10. This process continues until the loss stops
decreasing, i.e., it does not improve by at least 0.1 % for five
consecutive iterations.

This process and its parameters were inspired by classical
optimization, balancing the trade-off between convergence

VOLUME 12, 2024

rate and performance. The SGD optimization process starts
with the constant values predicted by the model and aims
to fine-tune these constants rather than finding significantly
different ones. In our empirical evaluation, the optimization
has shown to be efficient thanks to the initial constant
values being closely aligned with the desired ones. After
the constants are optimized for all predicted expressions,
we select the formula with the lowest error.

D. EXPRESSION ENCODING

Technically, we encode each expression as a sequence
of symbols and a sequence of real values. The symbols
correspond to different mathematical operators, e.g., + for
addition, - for multiplication, etc., expression’s variables,
e.g., X, y, or expression’s constants — numbers occurring in
the expression. All possible symbols constitute the model’s
vocabulary. The constants are encoded using a scientific-like
notation where a constant « is represented as a tuple of the
exponent ¢, and the mantissa c,:

_ o
T10¢”

o A cpy - 10%, ce = [logpal, cm 2)

In this representation, the mantissa is in the range [—1, 1], and
the exponent is an integer. The integer exponent is encoded
as a special symbol starting with ‘C’ and followed by the
exponent c.. The mantissa is kept as the real number (it is
optimized using the regression loss). In order to transform
the expression tree into this representation, we flatten the tree
using the preorder traversal [33]. For example, the expression
0.017 - x + 1781.5 has symbols [+, -, x, C-1, C4] and
constants [0, 0, 0, 0.17, 0.17815]. To further help the model
represent common integers, we add all integers from the
interval [—5, 5] to the model vocabulary. In contrast to the
approach in [16], which is able to express constants only up
to the four most significant digits, our approach achieves full
float precision.

IV. EXPERIMENTS

This section describes our training setup and the metrics
that we used to demonstrate the model’s ability to predict
the formulas and compare our model to relevant approaches
from the literature. We also present an ablation study
comparing different encodings and their impact on the
model’s performance. In our experiments, we refer to the
model trained only on univariate functions as the Univariate
SymFormer and the model trained on both the univariate and
bivariate functions as the Bivariate SymFormer.

To train and test our method, we have generated two
datasets: one containing 130 million univariate functions and
another one containing 100 million bivariate functions. The
univariate and bivariate test datasets contain 10 000 randomly
sampled equations each. To generate the formulas, we mod-
ified the algorithm described in [33] with a maximum of ten
operators. Then, we sampled uniformly at random 100 points
(200 for bivariate functions) from the interval [—5, 5]. The

37843



lEEEACC@SS M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture

(a) GT: (1 + 2~2)7%3, Pred: sin(|atan(z)|)

1.00
0.75 1
0.50 1
0.25 1
- GT
0.00 4 Pred
T T T T T
—10 -5 0 5 10
© GT: —7.46 — 0.8z + x cos(tan(x)),
) pred: —7.7 — m + x cos(tan(x))
10

1M W

720 -

—10 -5 0 5 10

© GT: —60.9 - x - exp(—x),
€ Pred: 0.0022% — 61.2 - 2 - exp(—x)

0 —

~10
— GT
—20 \\/ Pred
T T T T T T
0 2 4 6 8 10
GT: 7 - log (5 + 222),
©® Pred: 7 - log (5 + 2zg)
30 A
20
— GT
Pred
10 T T T T T
—10 -5 0 5 10

(b) GT: 7.7 4+ 31n(x), Pred: 31n(x) + 7.9

15 1
10
5
0 -
- GT

—5 | Pred

T T T T T T

0 2 4 6 8 10

021 A A ANANANAANANA
Wy
0.1 1 NN ‘ ‘
0.0 + ‘
—0.1 -
| | | [ | — GT
—0.2 - U VUV U vy VvV Pred
T T T T T
—10 -5 0 5 10

GT: 0.34z + 22 + sin (0.96 + z),
Pred: 22 4 cos(z) + atan(z)

100 +
75
50
\ /
\
\

)

251 /— ot
N\ - Pred
0 4 —
T T T T T
—-10 -5 0 5 10

GT: —4x — z tan (cos (b)),

(M Pred: —4x — x tan (cos (5z))
50
25 1
0 -
_25 -
— GT

—50 4 Pred

T T T T T

—10 -5 0 5 10

FIGURE 3. Examples of model predictions from the Univariate SymFormer. The shaded area represents the

training range. ‘GT’ denotes the ground truth and *

interval was reduced if the function was not defined on the
full interval.

A. TRAINING AND EVALUATION

We train our model using the Adam optimizer [34] for
3 epochs on 8 NVIDIA A100 GPUs. The training of the
model takes roughly 33 hours. We use a training schedule
similar to the original transformer [26]. However, we divide
the learning rate by five since the training often diverges when

37844

" is the model prediction.

using the original learning rate. The regression parameter A is
set according to the cosine schedule and delayed for 97 700
gradient steps, reaching 1.0 at the end of the training.! The
random noise is sampled from A/ (0, €) where € is initially set
to 0.1 and decreased to zero during training using the same
schedule. The same setup is used both for the Univariate and
Bivariate SymFormer.

IThe regression parameter A and the learning rate were updated every
109 /1024 ~ 977 gradient steps (batch size was 1024).

VOLUME 12, 2024



M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture

IEEE Access

(a) GT: bz + R Cos(:v2 + zy),

10 —10

Pred: bz + 22 + o cos(a:2 + zy + 3.14)

10 —10

FIGURE 4. Example of model prediction using the Bivariate SymFormer. The inputs x and y were sampled from the

range [-5, 5] x [-5, 5]. ‘GT’ denotes the ground truth and *

* is the model prediction. We visualize the range

[-10, 10] x [-10, 10] to demonstrate the extrapolation abilities.

The hyperparameters were chosen empirically based on
several trial-and-error experiments. Systematic hyperparam-
eter tuning is impractical for a transformer application of this
complexity. We discovered that using the proposed schedule
is essential, as the model needs sufficient precision in the
symbolic representation in order for the constant tuning to
be meaningful. Without the schedule, the learning process
did not converge. However, we found that the schedule is not
particularly sensitive to the exact setting of its parameters.

To evaluate the SymFormer’s performance, we use
1024 test equations, and for each of them (if not stated
otherwise), we generate 256 candidate equations using Top-K
sampling with K = 16 and further improve them using a local
gradient search (LGS) with early stopping. The best candidate
equation is then selected based on the lowest error on the input
points.

To be able to compare with previous approaches, we used
the same metrics and hyperparameters used in these methods,
namely the percentage of close points (with atol =
0.001 and rtol = 0.05) [14], the recovery rate with
tolerance (RR) introduced in [14] — percentage of equations
for which at least 95 % of points fall within a tolerance
(atol = 0.001 and rtol = 0.05), the coefficient of
determination (R%) [35], and the average time of prediction
(in seconds).

B. IN-DOMAIN PERFORMANCE

Figures 3 and 4 demonstrate SymFormer’s ability to predict
formulas successfully, showing several plots of the model’s
predictions. The Univariate SymFormer achieved an R? of
0.9995, and when we used the local gradient search, the
performance further improved to R> = 1. The Bivariate
SymFormer achieved an R? of 0.9996 and R?> = 1 when the
local gradient search was employed.

VOLUME 12, 2024

C. PERFORMANCE BASED ON THE NUMBER OF SAMPLES
The transformer used a fixed number of points during
training. The trained model, however, is robust to the
change in the number of input points. To demonstrate it,
we performed an experiment where we varied the number of
input points during inference. While the model was trained
on 100 points, we observe only 2.9 % and 6.5 % decrease in
performance when we use 50 and 20 points respectively, and
3.6 % drop in performance when we increase to 1 000 points.

D. COMPARISON TO ALTERNATIVE APPROACHES

To compare our results to state-of-the-art approaches,
we use the Nguyen [36], R rationals [37], Livermore, [12],
Keijzer [38], Koza [39], and Constant benchmarks. We strive
to make the comparison as fair as possible given the following
limitations. The first one is that some methods use a restricted
vocabulary and thus have a smaller search space, giving them
an advantage over our method. The second problem arises
from the different number of training points and the ranges
they are sampled from.

We compare our approach to two state-of-the-art
approaches: the transformer-based Neural Symbolic Regres-
sion that Scales (NSRS) [14], which is a pre-trained
transformer model, and the RL-based Deep Symbolic
Optimization (DSO) [13], trained for each equation from
scratch.

We use Top-K sampling with K = 20 and 1024 candidate
equations with early stopping. In comparison to previously
used K = 16 and 256 candidate equations, this setting offers
larger exploration at the cost of an increased inference time.
The results in Table 1 show that SymFormer is competitive
in terms of model performance on all the benchmarks while
outperforming both NSRS and DSO in the time required to
find the equation.

37845



IEEE Access

M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture

Distribution of Relative Prediction Errors for 1D Functions

10°

10!

Relative Frequency (%)

40 60 80
Relative Prediction Error (%)

> 100

100 Distribution of Relative Prediction Errors for 2D Functions

—
o

1072

Relative Frequency (%)

=
S
&

40 60
Relative Prediction Error (%)

> 100

FIGURE 5. Relative prediction errors on all benchmark functions reported in this paper. The logarithmic vertical axis represents the frequency of

the error represented by the given bin.

TABLE 1. Comparison of SymFormer with state-of-the-art methods on various benchmarks. SymFormer uses Top-K sampling with K = 20 while
generating 1024 samples and improving them using local gradient search with early stopping. We report R and the average time to generate an equation.

SymFormer NSRS [14] DSO [13]
Benchmark  R? 1 Time (s) J R2 9 Time (s) J R2 1 Time (s) J
Nguyen 0.99998  47.50 0.96744 169.46  0.99297 140.25
R 0.99986  94.33 1.00000 95.67  0.97488 855.33
Livermore 0.99996  43.00 0.88551 193.09  0.99651 276.32
Koza 1.00000 101.00 0.99999 111.50 1.00000 217.50
Keijzer 0.99904  48.67 0.97392 255.50  0.95302  3929.50
Constant ~ 0.99998  90.88 0.88742 230.38 1.00000  2816.19
Overall avg. 0.99978  52.95 0.92901 199.63  0.99443 326.53

TABLE 2. Comparison of SymFormer and Bivariate SymFormer
performance on all benchmarks. The (Bivariate) SymFormer uses Top-K
sampling with K = 20 while generating 1024 samples and improving
them using local gradient search with early stopping. We report R2 and
the average time to generate an equation.

SymFormer Bivariate SymFormer
Benchmark  R? 1 Time (s) | R? 1 Time (s) J
Nguyen 0.99998 47.50  0.99996 139.46
R 0.99986 94.33  0.99985 418.67
Livermore 0.99996 43.00 0.99992 170.00
Koza 1.00000 101.00 1.00000 81.50
Keijzer 0.99904 48.67  0.99884 250.66
Constant ~ 0.99998 90.88  0.99997 188.50
Overall avg. 0.99978 52.95  0.99946 174.32

Furthermore, to demonstrate the Bivariate SymFormer’s
performance on both the univariate and bivariate functions,
we evaluated a single model on all univariate and bivariate
functions using the same benchmark. Note that the bench-
mark functions are mostly univariate. In Table 2, we can
notice that Bivariate SymFormer has only slightly worse
performance. However, the average inference time increased,
which could be explained by the larger search space the model
needed to handle during the optimization of constants.

37846

Figure 5 shows the histogram of relative prediction errors,
calculated as an absolute value of the difference between the
model output and the ground truth, divided by the absolute
value of the ground truth plus a constant of 1078, The relative
prediction errors were calculated on all benchmark functions
listed in Section IV-D. For each function, 10 000 points were
sampled uniformly from their domains. The results indicate
that most of the errors are smaller than 10 %.

E. OUT-OF-DOMAIN PERFORMANCE

A desirable property of the algorithm is its ability to predict
correct values outside the training data range. To test it,
we first run the inference on the points sampled from the
training range and then evaluate these predicted functions
on points outside of the training range. More formally,
we calculate the metrics on the function values for points
sampled from the set {x e R | 5 < |x| < 5 + d}, where d is
the maximal distance. The effect of the distance on the per-
centage of close predictions and R” can be seen in Figure 6.
As we can see from the figure, the model still performs
exceptionally well even for larger distances from the sampled
domain. This demonstrates that the model generalizes outside
the sampled domain and fine-tuning the constants using

VOLUME 12, 2024



M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture

IEEE Access

0.86

0.84 1

0.82 1

0.80 1

0.78 1

Percentage of close predictions

20 40 60 80
Distance from the training domain

o4

0.9999985 -
0.9999980 -
EEG 0.9999975 -
0.9999970 -

0.9999965

20 40 60 80
Distance from the training domain

o4

FIGURE 6. The SymFormer’s out-of-domain performance.

the local gradient search does not hamper the extrapolation
capabilities.

F. STUDY OF CONSTANT ENCODINGS

To analyze the effectiveness of our constants’ representation,
we conduct a study comparing the representation to other
alternative options. In particular, we consider the following
variants:

a) ‘No constants + BFGS’: For each constant in the
expression, the transformer outputs a special symbol
C. At inference, after decoding a final expression, the
values of all expression’s constants (all symbols C) are
found using a posteriori global optimization (Broyden—
Fletcher—Goldfarb—Shanno algorithm, BFGS). This
setup is the same as in [14].

b) ‘Base encoding’: The model outputs C for all constants
and the regression head is used to predict the constant’s
values.

c) ‘Base decoding + LGS’: Same training as ‘Base
encoding’, however, at inference, we fine-tune the initial
estimates of the constants’ values with a local gradient
search.

d) ‘Extended encoding’: Setup described in Section I1I-D
—we split the constants into exponents and mantissas and
use special symbols for different constants’ exponents.
The mantissas are outputted by the regression head.
At inference, we do not fine-tune the constants’ values
after they are decoded.

VOLUME 12, 2024

TABLE 3. Comparison of expression encoding strategies and LGS.
SymFormer uses both extended encoding and LGS. We report R2, RR, and
the percentage of close predictions. The base encoding refers to the case
when no preprocessing for the constants is employed. BFGS init refers to
a situation when the predicted constants serve as a starting point for the
BFGS [40]. LGS refers to the case when the gradient search was used to
find or improve the constants further.

Model GS R2 1 RR 1 % of close pred. 1
No constants + BFGS v 0.9929 30.40 55.52
Base encoding X 0.9979 31.23 50.62
Base encoding + LGS v 1.0000 53.78 69.09
Extended encoding X 0.9995 48.99 70.40
Extended encoding + BFGS init v 0.9998 48.37 71.84
SymFormer v 1.0000 68.29 84.87

e) ‘Extended encoding + BFGS init’: The training is
the same as for the ‘Extended encoding’, however,
at inference, we throw away the initial estimates of the
constants’ values obtained from the model and run the
BFGS from scratch to get the constants’ values.

f) ‘SymFormer’: The final model. We use the exponent-
mantissa encoding and at inference, we optimize the
values of the constants using an LGS initialized from
the decoded values.

From the results in Table 3, we can see that using the
constants improves the model’s performance in terms of R,
the recovery rate with tolerance, and also in terms of the
percentage of close predictions. One can, therefore, conclude
that the performance of SymFormer in comparison to NSRS
is better not because of a different dataset or a larger model
but because of the use of the constants during training.
Furthermore, the last row shows the results for the extended
encoding, which uses a local gradient search to further tune
the constants. The extended encoding clearly outperforms the
base encoding in terms of R?, the recovery rate with tolerance,
and the percentage of close predictions. We believe this to
be the case because it is easier for the model to attend to
previously generated symbolic tokens than to real values.
Therefore, the model can make a more informed decision
when predicting the next symbol in the sequence.

V. CONCLUSION

To tackle the problem of symbolic regression, we introduced
a novel transformer-based approach called SymFormer that
uses a neural network trained on hundreds of millions
of formulas. SymFormer is able to efficiently generate a
previously unseen formula describing a set of input-output
pairs. The model jointly predicts the structure of the formula
and the values of all of its constants in a single forward pass of
the neural network. A local gradient search is used to tune the
constants further. On most of the benchmarks, SymFormer
outperforms other state-of-the-art methods not only in terms
of R? but also in terms of the time required to find the
underlying equation. We also validated the importance of
the proposed encoding of constants. Finally, by evaluating

37847



IEEE Access

M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture

SymFormer outside the training range, we demonstrated its
remarkable extrapolation capabilities.

Limitations. A limitation of the deep-learning-based
architecture is that the number of dimensions and the
sampling range are given by the training dataset, and there
are no guarantees regarding the behavior outside the dataset’s
distribution. Even though the inference is fast and efficient,
the training uses a lot of compute and takes a considerable
time on current hardware.

We have restricted our study to univariate and bivariate
functions, most of which did not contain discontinuities or
singularities. However, the architecture and training method
can easily be extended to include functions of more variables,
as well as discontinuous functions. These limitations could be
addressed in future work. Furthermore, the method could be
extended to model differential equations, as they have a large
number of applications in physics and robotics. Analyzing
the latent space produced by the encoder may also prove
insightful.

REFERENCES

[1] D. Wadekar, L. Thiele, F. Villaescusa-Navarro, J. C. Hill, M. Cranmer,
D. N. Spergel, N. Battaglia, D. Anglés-Alcdzar, L. Hernquist, and
S. Ho, “Augmenting astrophysical scaling relations with machine learning:
Application to reducing the sunyaev-zeldovich flux-mass scatter,” 2022,
arXiv:2201.01305.

[2] K. T. Matchev, K. Matcheva, and A. Roman, “Analytical modelling of
exoplanet transit specroscopy with dimensional analysis and symbolic
regression,” 2021, arXiv:2112.11600.

[3] J. Kubalik, E. Derner, J. Zegklitz, and R. Babuska, “Symbolic
regression methods for reinforcement learning,” IEEE Access, vol. 9,
pp. 139697-139711, 2021.

[4] D.Hein, S. Udluft, and T. A. Runkler, “Interpretable policies for reinforce-
ment learning by genetic programming,” 2017, arXiv:1712.04170.

[5] C. Wilstrup and J. Kasak, “Symbolic regression outperforms other models
for small data sets,” 2021, arXiv:2103.15147.

[6] M. Schmidt and H. Lipson, “Distilling free-form natural laws
from experimental data,” Science, vol. 324, no. 5923, pp.81-85,
Apr. 2009.

[7] J. Kubalik, E. Derner, and R. Babuska, “Symbolic regression driven by
training data and prior knowledge,” in Proc. Genetic Evol. Comput. Conf.,
Jun. 2020, pp. 958-966.

[8] J. R. Koza, Genetic Programming: On the Programming of Computers
By Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[9] N. Staelens, D. Deschrijver, E. Vladislavleva, B. Vermeulen, T. Dhaene,
and P. Demeester, “Constructing a no-reference H.264/AVC bitstream-
based video quality metric using genetic programming-based symbolic
regression,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 8,
pp. 1322-1333, Aug. 2013.

[10] 1. Arnaldo, U.-M. O’Reilly, and K. Veeramachaneni, ‘“Building predictive
models via feature synthesis,” in Proc. Annu. Conf. Genetic Evol. Comput.,
New York, NY, USA: Association for Computing Machinery, Jul. 2015,
pp. 983-990.

[11] 1. Btadek and K. Krawiec, “Solving symbolic regression problems with
formal constraints,” in Proc. Genetic Evol. Comput. Conf., New York, NY,
USA: ACM, Jul. 2019, pp. 977-984.

[12] B. K. Petersen, M. Landajuela, T. N. Mundhenk, C. P. Santiago,
S.K.Kim, and J. T. Kim, “Deep symbolic regression: Recovering
mathematical expressions from data via risk-seeking policy gradients,”
2019, arXiv:1912.04871.

[13] T. Nathan Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago,
D. M. Faissol, and B. K. Petersen, ‘“Symbolic regression via neural-guided
genetic programming population seeding,” 2021, arXiv:2111.00053.

[14] L. Biggio, T. Bendinelli, A. Neitz, A. Lucchi, and G. Parascandolo,
“Neural symbolic regression that scales,” 2021, arXiv:2106.06427.

37848

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]
(30]

(31]

(32]
(33]
(34]

(35]

(36]

(37]

(38]

(391

[40]

M. Valipour, B. You, M. Panju, and A. Ghodsi, “SymbolicGPT: A genera-
tive transformer model for symbolic regression,” 2021, arXiv:2106.14131.
S. d’Ascoli, P.-A. Kamienny, G. Lample, and F. Charton, “Deep symbolic
regression for recurrence prediction,” in Proc. Int. Conf. Mach. Learn.,
2022, pp. 4520-4536.

G. Dorgo, T. Kulcsar, and J. Abonyi, “Genetic programming-based
symbolic regression for goal-oriented dimension reduction,” Chem. Eng.
Sci., vol. 244, Nov. 2021, Art. no. 116769.

R. Zhang, A. Lensen, and Y. Sun, “Speeding up genetic programming
based symbolic regression using gpus,” in Proc. Pacific Rim Int. Conf.
Artif. Intell., 2022, pp. 519-533.

P. Orzechowski, W. La Cava, and J. H. Moore, “Where are we now? A large
benchmark study of recent symbolic regression methods,” in Proc. Genetic
Evol. Comput. Conf., New York, NY, USA: Association for Computing
Machinery, Jul. 2018, pp. 1183-1190, doi: 10.1145/3205455.3205539.

L. Trujillo, L. Muifioz, E. Galvan-Lépez, and S. Silva, “Neat genetic
programming: Controlling bloat naturally,” Inf. Sci., vol. 333, pp. 21-43,
Mar. 2016.

M. Kommenda, B. Burlacu, G. Kronberger, and M. Affenzeller, ‘“‘Param-
eter identification for symbolic regression using nonlinear least squares,”
Genetic Program. Evolvable Mach., vol. 21, no. 3, pp. 471-501, Sep. 2020.
L. Truyjillo, P. S. Judrez-Smith, P. Legrand, S. Silva, M. Castelli,
L. Vanneschi, O. Schiitze, and L. Mufioz, “Local search is underused in
genetic programming,” in Genetic and Evolutionary Computation. Cham,
Switzerland: Springer, 2018, pp. 119-137.

G. Martius and C. H. Lampert, “Extrapolation and learning equations,”
2016, arXiv:1610.02995.

S. S. Sahoo, C. H. Lampert, and G. Martius, “Learning equations for
extrapolation and control,” 2018, arXiv:1806.07259.

M. Werner, A. Junginger, P. Hennig, and G. Martius, “Informed equation
learning,” 2021, arXiv:2105.06331.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘“Attention is all you need,” 2017,
arXiv:1706.03762.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl blog,
vol. 1, no. 8, p. 9, 2019.

J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. Whye Teh, *“Set
transformer: A framework for attention-based permutation-invariant neural
networks,” 2018, arXiv:1810.00825.

P-A. Kamienny, S. d’Ascoli, G. Lample, and F. Charton, “End-to-end
symbolic regression with transformers,” 2022, arXiv:2204.10532.

J. Lei Ba, J. Ryan Kiros, and G. E. Hinton, ‘““Layer normalization,” 2016,
arXiv:1607.06450.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929-1958, Sep. 2014.
I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” 2016, arXiv:1608.03983.

G. Lample and F. Charton, “Deep learning for symbolic mathematics,”
2019, arXiv:1912.01412.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

S. Glantz and B. Slinker, Primer of Applied Regression & Analysis of
Variance. New York, NY, USA: McGraw-Hill, 2000. [Online]. Available:
https://books.google.cz/books?id=fzV2QgAACAAJ

N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. Galvan-Lépez,
“Semantically-based crossover in genetic programming: Application to
real-valued symbolic regression,” Genetic Program. Evolvable Mach.,
vol. 12, no. 2, pp. 91-119, Jun. 2011.

K. Krawiec and T. Pawlak, ‘“Approximating geometric crossover by
semantic backpropagation,” in Proc. 15th Annu. Conf. Genetic Evol.
Comput., New York, NY, USA: Association for Computing Machinery,
Jul. 2013, pp. 941-948, doi: 10.1145/2463372.2463483.

M. Keijzer, “Improving symbolic regression with interval arithmetic and
linear scaling,” in Lecture Notes in Computer Science. Cham, Switzerland:
Springer, 2003, pp. 70-82.

J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA, USA: MIT Press, 1994.

R. Fletcher, Practical Methods of Optimization. Hoboken, NJ, USA: Wiley,
1987.

VOLUME 12, 2024


http://dx.doi.org/10.1145/3205455.3205539
http://dx.doi.org/10.1145/2463372.2463483

M. Vastl et al.: SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture IEEEACC@SS

VOLUME 12, 2024

MARTIN VASTL received the B.Sc. degree in
computer science from Czech Technical Univer-
sity in Prague and the M.Sc. degree in artificial
intelligence from Charles University. He currently
works in the field of autonomous driving. His
research interests include symbolic regression,
language modeling, sequence-to-sequence mod-
els, and all areas of autonomous driving.

JONAS KULHANEK received the B.Sc. degree in
computer science from Czech Technical Univer-
sity in Prague and the M.Sc. degree in artificial
intelligence from Charles University. He is cur-
rently pursuing the Ph.D. degree in computer
science, under the supervision of Torsten Sattler.
His research focuses mainly on implicit 3-D
scene representations and neural rendering, with
additional interests in deep reinforcement learning
and transformer-based language models.

JIRI KUBALIK reccived the M.Sc. degree in
computer science and the Ph.D. degree in artifi-
cial intelligence and biocybernetics from Czech
Technical University (CTU) in Prague, in 1994 and
2001, respectively. He is a Senior Researcher with
the Czech Institute of Informatics, Robotics, and
Cybernetics, CTU in Prague. His research has
mainly focused on various types of evolutionary
computation techniques and their applications to
hard optimization problems. He is a (co)author of
more than 30 papers in this area.

ERIK DERNER received the M.Sc. degree (Hons.)
in artificial intelligence and computer vision from
Czech Technical University (CTU) in Prague,
Czech Republic, and the Ph.D. degree in control
engineering and robotics from CTU, in 2022. His
research interests include human-centric artificial
intelligence, large language models, robotics,
sample-efficient model learning, genetic algo-
rithms, and computer vision. The central topics in

; ¢ his research are safety, security, and ethical aspects
of generative and conversational artificial intelligence.

ROBERT BABUSKA (Member, IEEE) received
the M.Sc. degree (Hons.) in control engineer-
ing from Czech Technical University in Prague,
in 1990, and the Ph.D. degree (cum laude)
from Delft University of Technology (TU Delft),
The Netherlands, in 1997. He was a Faculty Mem-
ber with Czech Technical University in Prague;
and the Electrical Engineering Faculty, TU Delft,
where he is currently a Full Professor of intelligent
control and robotics with the Department of
Cognitive Robotics, Faculty of Mechanical Engineering. In the past,
he has made seminal contributions to the field of nonlinear control and
identification with the use of fuzzy modeling techniques. His current research
interests include reinforcement learning, adaptive and learning robot control,
nonlinear system identification, and state estimation. He has involved in
the applications of these techniques in various fields, ranging from process
control to robotics and aerospace.

37849



